Complex Systems Oriented Approach for dApps
Analysis

Giuseppe Destefanis
Department of Computer Science
Brunel University London, UK
giuseppe.destefanis @brunel.ac.uk

Abstract—This position paper discusses on applying complex
systems theory to analyse decentralised applications (dApps). It
highlights the need for understanding smart contract networks’
dynamics that are at the base of such platforms. Through
a discussion that includes architecture, use cases, and both
network and function-level scrutiny, including traditional and
new software metrics, we argue how insights from complex
systems can improve the understanding of dApps’ behavior,
vulnerabilities, and areas for optimisation. This position paper
lays a foundation for enhancing the resilience, efficiency, and
security of dApps within the blockchain environment.

Index Terms—complex systems, smart contracts, dApps,
blockchain

I. INTRODUCTION

Complex systems are a cross-disciplinary area of science
focusing on the study of systems where numerous components
interact in different ways, producing behaviours that are not
easily predicted by examining the components alone. These
systems are distinguished by their vast set of different, inter-
connected elements and complex organisational frameworks.

In the context of computer science and information tech-
nology, complex systems can refer to computational networks
where nodes represent distinct computational entities and
edges denote the interactions or data flows between them. This
approach is particularly relevant when analysing decentralised
applications (dApps) on blockchain networks like Ethereum,
where smart contracts act as the building blocks of a “com-
plex” system. By modeling the relationships and interactions
between smart contracts as a complex network, researchers can
better understand the functionality, dependencies, and potential
vulnerabilities within the dApp ecosystem.

Parisi [9] defines Complex systems in the following way:
“Generally speaking, we could say that a complex system
can stay in many different equilibrium states, while a simple
system may stay only in one or a few equilibrium states. For
example, an animal like a dog can do many different actions
(e.g., play, sleep, eat, hunt); an animal can switch from one
state to another state in a very short time ad the effect of a
small perturbation, e.g., suddenly waking up after hearing a
suspicious noise. In a nutshell what does not change over time
(or change irreversibly) is not complex, while a system that
can take many different forms or behaviors certainly is..”

A complex system is a system composed of interconnected
parts that as a whole exhibit one or more properties (behavior

among the possible properties) not obvious from the properties
of the individual parts. This concept is interesting for the
study of decentralised systems and blockchain technology, as it
helps in capturing the non-linear interactions and the collective
behavior of smart contracts within dApps, which emerge from
the interplay of their constituent smart contracts.

This position paper aims to examine how applying com-
plex systems theory can improve our understanding of de-
centralised applications. Through the lens of a case study
dApp similar to Uniswap', an extensive, open marketplace
on the Ethereum blockchain for cryptocurrency exchanges
without traditional goods or services, we will explore how
this theoretical approach can yield more profound insights into
dApps’ architecture and behaviours. It stands as a paradigm of
decentralisation, operating autonomously without any central
authority, and is instead driven by a network of smart contracts
and active user engagement.

To grasp the workings of this Uniswap-like dApp, let us
consider the following components.

Automated Market Making (AMM): unlike traditional
markets that rely on buyers, sellers, and sometimes interme-
diaries to facilitate matches, this platform employs AMM to
eliminate the need for a middleman. It uses liquidity pools
for each cryptocurrency pair (e.g., Ethereum and a US Dollar
Token equivalent), enabling continuous trading by using these
pools of funds.

Liquidity Pools: these are essentially large reserves contain-
ing two types of cryptocurrencies. Users can contribute their
assets to these pools to become liquidity providers, earning
transaction fees as a reward, akin to earning interest in a
savings account but with the added element of risk and higher
potential returns.

Trading and Pricing: users looking to exchange one cryp-
tocurrency for another interact directly with the liquidity pool
containing both currencies. Prices are determined automati-
cally by smart contracts based on the relative quantities of
each cryptocurrency in the pool, with the potential for price
shifts as trades alter the pool’s balance.

Decentralisation: operating on the Ethereum blockchain
and governed by smart contracts, this platform eschews a cen-
tralized authority, granting users more control. Participants can

Uhttps://app.uniswap.org/swap



directly engage with the marketplace via their cryptocurrency
wallets.

This conceptual dApp, inspired by Uniswap, is an exem-
plar of a complex system, as evidenced by its ability to
inhabit multiple equilibrium states—each liquidity pool can
maintain varying levels of liquidity, depth, and pricing that
are dynamically adjusted based on market conditions and
participant actions. Specifically, the following points illustrate
its alignment with the definition of a complex system:

Interconnectedness: the dApp’s numerous liquidity pools
represent a network of interconnected parts, where each pool
is linked to others through the shared practice of AMM and the
overarching smart contract architecture. This network forms a
web of financial interactions and dependencies.

Diversity of Components: each liquidity pool operates
under a uniform set of rules but is distinguished by its unique
assortment of assets, trading volume, and user-provided liquid-
ity. This variety enhances the overall strength and adaptability
of the system.

Adaptability: the system exhibits a high degree of adapt-
ability, adjusting to changes such as significant trades or shifts
in market sentiment. Liquidity providers can freely enter and
exit pools, while traders can execute trades at any time, all
of which contribute to the system’s fluidity and its ability to
reach new equilibrium states.

Emergent Behavior: the pricing mechanism within each
pool—determined by the relative quantities of the two assets
and the AMM algorithm—is a prime example of emergent
behavior. It is not dictated by any single participant but rather
arises from the collective action of all traders and liquidity
providers.

Non-linearity: The relationship between trading activities,
liquidity provision, and price is highly non-linear. Large trades
can lead to significant price impacts, which in turn can trigger
cascading effects as other participants respond to the new
prices.

Dynamic Nature: as described by Parisi [9], the system
can rapidly transition between states in response to small
perturbations—a large trade or a sudden shift in market
conditions can quickly alter a pool’s state, much like an animal
reacting to its environment.

Complex Feedback Loops: the governance model intro-
duces complex feedback loops into the system, where token
holders can propose and vote on changes that may alter the
dApp’s rules and parameters, influencing the behavior of all
other components.

II. DECENTRALISED APPLICATION ARCHITECTURE

The software architecture of the Uniswap-like dApp is built
on the Ethereum blockchain, using smart contracts to automate
the functions of its decentralised exchange. This architecture
uses a collection of smart contracts to enable trading, liquidity
provision, and governance mechanisms. Here is a generalised
overview of some key smart contracts and components that
facilitate the operation of such a dApp:

Factory Contract: responsible for creating new smart con-
tracts for each cryptocurrency pair, acting as a registry and
deploying an Exchange Contract (or Pool Contract) for new
market pairs as needed.

Exchange Contract (or Pool Contract): dedicated to
handling trades and liquidity for specific token pairs, these
contracts use the Automated Market Making (AMM) algo-
rithm to set prices based on the current supply of the tokens
within the pool.

Router Contract: serves to bridge users with Exchange
Contracts, streamlining the trade execution and liquidity man-
agement by directing interactions to the correct Exchange
Contracts for the user’s chosen token pairs.

Liquidity Pool Tokens (LP Tokens) Contract: issues
LP tokens to users who provide liquidity, representing their
share in the pool. These tokens can be exchanged back for
the underlying assets at any time, effectively managing the
issuance and redemption process.

Governance Contract: facilitates a governance system
where token holders have the power to vote on protocol
changes. This contract oversees the proposal, voting, and
implementation phases of governance decisions.

WETH Contract: addresses the need for trading Ethereum
(ETH) in a tokenized form within pools that primarily han-
dle ERC-20 tokens by wrapping ETH into Wrapped Ether
(WETH), allowing for direct trades against other ERC-20
tokens.

Staking Contract: offers users the opportunity to stake
their LP tokens or other supported tokens to earn rewards,
which can be derived from trading fees or other incentive
mechanisms designed within the dApp.

TimeLock Contract: introduces a delay between the ap-
proval of governance proposals and their execution, providing
a window for community response to new changes.

Migration Contract: supports the dApp through version
upgrades by facilitating the transfer of liquidity from one
version to the next, ensuring a smooth transition for liquidity
providers.

Position Manager Contract: a feature akin to what was
introduced in Uniswap V3, allowing for concentrated liquidity
positions within specific price ranges, managing the allocation,
modification, and removal of capital.

This Uniswap-like dApp’s architecture is designed to be
modular, with each contract fulfilling distinct roles within the
ecosystem.

III. USE CASE

Let us now consider a use case within a Uniswap-like
decentralised application (dApp), where a user aims to swap
Ethereum (ETH) for DAI (a stablecoin pegged to the US
dollar) and subsequently provide liquidity to the ETH-DAI
pool. This scenario illustrates the interaction among various
smart contracts to enable these actions.

o Step 1: Swapping ETH for DAI

— User interaction with Router Contract: the user
initiates the process through the dApp’s interface,



specifying the amount of ETH they wish to exchange
for DAL This action interfaces with the Router
Contract.

— WETH Contract Conversion: to facilitate the swap
within the dApp’s pools, which primarily handle
ERC-20 tokens, the Router Contract converts the
ETH to Wrapped Ether (WETH) through the WETH
Contract.

— Router to Exchange Contract: the Router Contract
locates the correct Exchange Contract (or Pool Con-
tract) for the WETH-DALI pair, calculating the DAI
amount the user receives based on the pool’s existing
WETH to DAI ratio and the AMM algorithm.

— Execution of Trade: the Router Contract conducts
the trade, transferring the specified WETH amount
into the pool and allocating the calculated DAI
amount to the user from the pool.

o Step 2: Providing Liquidity to the ETH-DAI Pool

— Token Approval: the user decides to supply liquidity
to the ETH-DALI pool, necessitating authorization for
the Router Contract to manage their WETH and DAI
tokens. This approval process involves interaction
with the ERC-20 contracts of WETH and DAI.

— Adding Liquidity via Router Contract: after spec-
ifying the desired amounts of WETH and DAI to
contribute, the Router Contract verifies the existence
of an Exchange Contract for the WETH-DAI pair via
the Factory Contract. Upon confirmation, it aids in
adding the user’s tokens to the pool.

— LP Tokens Issued: the Exchange Contract grants
LP tokens to the user proportional to the provided
liquidity, managed by the Liquidity Pool Tokens (LP
Tokens) Contract, symbolising the user’s share in the
pool.

o Step 3: Staking LP Tokens (Optional)

— Staking Contract Interaction: for users seeking ad-
ditional rewards, staking their LP tokens through the
Staking Contract is an option. This contract oversees
reward distribution, potentially sourced from trading
fees or specific incentives within the dApp.

— Earning Rewards: users accumulate rewards over
time based on their liquidity contribution, repre-
sented by the staked LP tokens.

Throughout this process:

o The Governance Contract may play a role if recent
protocol adjustments influence fees, rewards, or other
functionalities used by the user.

e The TimeLock Contract introduces a delay for gover-
nance vote-approved changes, offering the community a
period for review.

o The Migration Contract becomes relevant for users
transitioning their liquidity from an older dApp version
to an updated one.

In the functioning of a Uniswap-like dApp, interactions with

certain contracts external to the dApp itself are fundamental

to its operation. A key example of such an external contract
is the Wrapped Ether (WETH) contract, which adheres to the
ERC-20 standard and enables the trading of Ethereum (ETH)
as though it were an ERC-20 token. This functionality is vital
since the liquidity pools within the dApp are configured to
support ERC-20 tokens exclusively. As a result, when users
wish to exchange ETH for another ERC-20 token, like DAI,
they must first convert their ETH to WETH through the
WETH contract. Additionally, users are required to provide
explicit permission for the dApp’s Router Contract to manage
their WETH and DAI tokens. This permission is granted
via direct interaction with the ERC-20 contracts for WETH
and DAI, using the approve function to authorize the Router
Contract to execute token transfers on behalf of the users.
This authorization step is indispensable for empowering the
Router Contract to facilitate token handling during trading and
liquidity provision activities, without taking direct control of
the users’ assets. These interactions with external contracts
highlight the significance of interoperability and composability
within the Ethereum blockchain ecosystem, enabling various
contracts to collaborate effectively to provide the sophisticated
services characteristic of the dApp.

IV. COMPLEX NETWORKS

In analysing the architecture of our example, we can concep-
tualise its smart contracts as nodes within a complex network
graph, where the edges represent the interactions between
these contracts. Each node, or smart contract, serves a specific
function within the ecosystem—such as facilitating exchanges
(Exchange/Pool Contracts), managing liquidity (Liquidity Pool
Tokens Contract), or governing the dApp’s parameters (Gov-
ernance Contract). The connections or edges between these
nodes illustrate the flow of data, tokens, and control commands
that enable the dApp’s operations.

A connection from the Router Contract node to the Ex-
change/Pool Contract shows a trade happening, while a link
to the WETH Contract is for turning Ethereum into Wrapped
Ether for ERC-20 transactions. This way of mapping helps
in understanding the structure and highlighting weaknesses,
like potential security risks or places that could be made more
efficient, such as improving trades or lowering costs.

Figure 1 shows a network of smart contract interactions
within our Uniswap-like dApp, showing the interconnected
nature of the system, as well as the inclusion of external
contracts which introduce external dependencies and potential
vulnerabilities.

In the graph, each node represents a smart contract, while
the edges illustrate the interactions between them:

o The Router Contract is central, interfacing with the
WETH Contract for wrapping and unwrapping Ether,
and with the Exchange/Pool Contract for trade execu-
tion and liquidity management.

o The Factory Contract is tasked with creating new Ex-
change/Pool Contracts for different token pairs, essential
for the dApp’s trading functionality.



interacts with:

indirectly affect: Router Contract

interacts with:

Governance Contract

interacts with

interacts with: TimeLock Contract

indirectly affects:

interacts with: WETH Contract

Factory Contract
Migration Contract

interacts with

Exchange/Pool Contract

interacts with—ﬁ Liquidity Pool Tokens Contract

/

Staking Contract interacts with

interacts with

Position Manager Contract interacts with

Fig. 1. Network representation of the dApp

o The Liquidity Pool Tokens Contract issues LP tokens,
which represent a user’s share in the liquidity pool and
interacts with the Exchange/Pool Contract.

o The Governance Contract indirectly affects the Router
and Factory Contracts, as it governs protocol changes that
may alter their behavior.

o The TimeLock Contract interacts with the Governance
Contract to ensure that changes are implemented with a
delay for community review.

« The Staking Contract and Position Manager Contract
interact with the Exchange/Pool Contract, managing stak-
ing rewards and concentrated liquidity positions, respec-
tively.

« The Migration Contract enables the transfer of liquidity
from one protocol version to another, indicating the
system’s upgradability.

Highlighted in the network is the interaction with the
WETH Contract, which is external to the dApp, illustrating
the dApp’s reliance on external components for essential
operations like trading ETH. This reliance exposes the dApp
to risks associated with those contracts, such as vulnerabilities
or downtime in the WETH Contract potentially impacting the
dApp’s ability to process ETH trades.

The graph demonstrates the modular and interdependent
architecture of the dApp, allowing for an analysis of how the
system responds to changes and external events. For instance,
if an external event caused a surge in interactions with the
WETH Contract, it could create bottlenecks impacting the
Router Contract’s efficiency. Studying a dApp as a complex
system [1], [2] provides insight into how dApps maintain
robustness while revealing structural vulnerabilities related to
their network.

By considering various levels of analysis granularity—such
as contract level, function level, and the use of bipartite graphs
for analysing contract-function or function-contract relation-
ships—we can uncover insights into potential weaknesses and
how they might be exploited or mitigated.

A. Contract-level

At the contract level, we examine the network of smart
contracts and how they interact with one another. The analysis

explores the network of smart contracts that constitute the
backbone of a dApp, focusing on how these contracts, as
distinct entities, interact and form the foundation of the appli-
cation. Our example involves different contracts—such as the
Factory, Exchange/Pool, Router, LP Tokens, and Governance
contracts—each fulfilling specific roles within the ecosystem.

The Factory Contract acts as a central point for creating new
Exchange/Pool Contracts, establishing a dynamic marketplace
for various cryptocurrency pairs. The Router Contract serves as
the interface for users, directing trades and liquidity provision-
ing to the appropriate Exchange/Pool Contracts. This modular
setup allows for efficient management of trading and liquidity
across different token pairs.

Intercontract interactions are key to the dApp’s operation,
with each contract depending on others to perform its func-
tions. For example, the Router Contract relies on the Factory
Contract to locate or create the necessary Exchange/Pool
Contract for a user’s trade request. Similarly, the Governance
Contract plays an important role in facilitating protocol up-
grades and changes, influencing the behavior and parameters
of other contracts within the ecosystem.

Understanding the contract-level structure is extremely im-
portant for identifying potential systemic risks and points of
failure. The Router Contract’s central role in facilitating trades
and liquidity means that any compromise in its operation could
have impacts on the dApp’s overall functionality. Similarly,
the Governance Contract’s ability to enact changes across the
platform highlights the importance of secure and robust voting
mechanisms to prevent malicious or unintended alterations to
the system.

By examining the network at the contract level, we can
gain insights into the dApp’s architectural design and identify
critical components that ensure its stability and security. This
view allows us to better understand the interdependencies
among contracts and the importance of each in maintaining
the dApp’s ecosystem.

B. Function-level

Function-level analysis focuses on the interactions between
individual functions across different contracts. This granularity



helps identify specific points of failure that might not be
apparent at the contract level.

Let’s consider a function in the Liquidity Pool Tokens
Contract that issues LP tokens based on the liquidity provided.
The function’s logic might involve complex calculations to
determine the amount of LP tokens to issue based on the
current state of the liquidity pool. Suppose this function
contains a rounding error when calculating the user’s share or
fails to properly handle integer overflows (for example, when
large amounts of liquidity are added to the pool). In such cases,
an attacker could deliberately create transactions that exploit
these vulnerabilities to either receive more LP tokens than they
are entitled to or disrupt the token distribution mechanism,
affecting the fairness and integrity of the liquidity pool.

In the Uniswap-like dApp, the Exchange/Pool Contract and
the Liquidity Pool Tokens Contract work closely together.
The Exchange/Pool Contract handles the addition of liquidity
to the pool and interacts with the Liquidity Pool Tokens
Contract to issue LP tokens. A potential overflow vulnerability
in the “addLiquidity” function of the Exchange/Pool Contract
could, for example, pass incorrect parameters to the LP Tokens
Contract, leading to incorrect LP token issuance.

To prevent overflow and underflow vulnerabilities, the
smart contracts should use the SafeMath library (or similar
mechanisms which include built-in overflow checks) for all
arithmetic operations. This ensures that all calculations are
performed safely without unexpected wraparounds.

To mitigate reentrancy risks associated with external calls
made by functions, adhering to the Checks-Effects-Interactions
design pattern ensures that state changes are finalized before
any external interactions occur. This pattern can be crucial
in functions that involve token transfers or interactions with
external contracts. By zooming in on the function-level in-
teractions and vulnerabilities within the smart contracts of the
Uniswap-like dApp, developers can gain a detailed understand-
ing of potential security risks.

C. Bipartite graphs

Bipartite graphs offer a way to analyse the relationships
between two distinct sets of nodes. In this context would
consist of two distinct sets of nodes: one representing the
smart contracts (such as the Router Contract, WETH Con-
tract, Exchange/Pool Contract, etc.) and the other representing
the functions within these contracts (e.g., addLiquidity, re-
movelLiquidity, swapETHForToken, etc.). Edges in this graph
would connect contracts to their respective functions, illustrat-
ing the operational flow and dependencies within the dApp.

In this direction, Ibba et al. developed MindTheDapp [5], a
novel toolchain for analysing Ethereum-based dApps through
a complex network-driven approach, transforming smart con-
tract interactions into a specialized bipartite graph for ad-
vanced network analytics.

For instance, the function for wrapping ETH into WETH
(wrapETH) is key for enabling ETH trades against ERC-
20 tokens in the dApp. This function, located within the
WETH Contract, is used for operations involving ETH, as it

allows ETH to be treated as an ERC-20 token, maintaining
consistency within the dApp’s trading mechanism. Similarly,
the addLiquidity function in the Exchange/Pool Contract is
central for maintaining the liquidity pools’ health.

A bipartite graph analysis could reveal that these key func-
tions (wrapETH, addLiquidity) are heavily reliant on interac-
tions with a limited number of other contracts—highlighting a
concentration of dependency that could pose risks if those con-
tracts are compromised. For example, if the WETH Contract
were susceptible to a reentrancy attack, it could jeopardize not
just the wrapping/unwrapping of ETH but also ripple through
the ecosystem, affecting trades and liquidity provisions that
depend on the integrity of wrapped ETH.

Understanding the critical pathways and dependencies al-
lows for implementing strict security measures around key
functions. For functions identified as high-risk due to their
centrality or dependency concentration, integrating circuit
breakers can provide a fail-safe. These mechanisms allow
for the temporary halting of contract functions in response
to detected anomalies or attacks, mitigating potential damage
while a permanent fix is developed. Designing contracts with
upgradability in mind ensures that vulnerabilities identified
through bipartite graph analysis can be addressed without
overhauling the entire system. Proxy patterns and upgradeable
smart contract designs allow for the selective updating of
critical functions or contracts that present elevated risks.
Implementing a governance model for critical updates or
changes to high-centrality functions and contracts can ensure
that modifications are made transparently and with community
consensus. This reduces the risk of unilateral changes that
could introduce vulnerabilities or disrupt the dApp’s opera-
tions. By employing bipartite graph analysis, developers and
auditors can gain a complete view of the operational and
functional dependencies. This detailed mapping facilitates a
targeted approach to securing the ecosystem, ensuring that
critical functions and their supporting contracts are fortified
against potential threats, enhancing the overall robustness and
reliability of the decentralised application.

V. SMART CONTRACT SOFTWARE METRICS

Incorporating additional metrics into the complex network
analysis of dApps’ smart contracts and functions can sig-
nificantly enhance our understanding and evaluation of the
system’s robustness, efficiency, and security [4], [8], [10].
Traditional software metrics, alongside newly defined metrics
specific to the blockchain and smart contract domain, provide
a multidimensional view of each node (smart contract or
function) within the network graph. These metrics could
include code complexity, gas usage, transaction throughput,
reusability, and the frequency of function calls, among others.
By assigning these metrics to nodes, we gain a richer dataset
for analysis, allowing for a deep assessment of the system’s
behavior under various conditions.

Code complexity metrics, such as cyclomatic complexity,
can give insights into how intricate a smart contract or function
is, potentially indicating harder-to-maintain code or higher



susceptibility to bugs. Gas usage metrics for functions can
highlight areas where optimisations are necessary to reduce
transaction costs and improve the system’s scalability. Mea-
suring transaction throughput for each contract or function can
identify bottlenecks in the system, where performance might
degrade under high demand. Reusability metrics, which assess
how often code is reused across the system, can indicate a
healthy modular design or, conversely, areas where too much
dependency on a single function or contract could pose risks.

The frequency of function calls is a dynamic metric that
reflects how users interact with the dApp. High-frequency
nodes might be critical paths that require additional security
measures or optimisations to ensure the system’s reliability
and responsiveness. Newly defined metrics for smart con-
tracts, such as upgradeability score (how easily a contract
can be upgraded to fix vulnerabilities), decentralisation degree
(the extent to which control and decision-making are spread
across the network), and inter-contract coupling (the degree
of dependency between contracts), can offer insights into the
architectural and operational qualities of the dApp. These
metrics can help identify strengths and weaknesses in the
system’s design and governance.

By integrating these metrics into the complex network anal-
ysis, researchers and developers can perform analyses at both
the smart contract and function levels. For instance, analysing
the correlation between code complexity and gas usage across
nodes can identify areas for optimisation. Incorporating addi-
tional metrics into the network graph transforms it from a static
representation of relationships into a dynamic, informative
tool that can guide decision-making processes, from code
optimisations to architectural adjustments. This approach to
analysing dApps not only aids in identifying current issues
but also in predicting future challenges, enabling proactive
measures to ensure the system’s robustness, efficiency, and
security.

VI. CONCLUSION

In this position paper, we have examined how complex
systems theory can be applied to the study of decentralised ap-
plications (dApps). This exploration stressed the significance
of grasping the detailed interactions and dependencies within
the networks of smart contracts fundamental to these plat-
forms. By applying concepts from complex systems, we can
increase our understanding of dApps’ behavior, vulnerabilities,
and potential areas for optimisation [3], [6], [7].

Our discussion began with an introduction to complex
systems theory and its relevance to dApps, highlighting how
this perspective allows for a deeper comprehension of their
functionality and inherent challenges. We then provided an
overview of the architecture of a Uniswap-like dApp, noting
the roles of various smart contracts and how they interact
within this modular and interconnected framework. A specific
use case was explored to illustrate the dynamic between users,
smart contracts, and the Ethereum blockchain, emphasising
the transaction flow and the critical role each contract plays
in facilitating exchanges and liquidity provision.

Further suggestions included modeling the dApp’s smart
contracts as nodes within a complex network graph, which
could shed light on the structural relationships and potential
vulnerabilities within the system. This approach can help
pinpoint critical components and assess their influence on the
system’s stability and security. It is possible to achieve addi-
tional depth by analysing functions within contracts through
function-level analysis and employing bipartite graphs, which
can allow for a focused examination of vulnerabilities and
dependencies at a more granular level.

The integration of traditional software metrics and newly
defined ones can further enrich the complex network analy-
sis, providing a complete view of each node’s performance,
security, and efficiency.

Applying complex systems theory to the analysis of decen-
tralised applications lays out a thorough framework for under-
standing their architecture, functionality, and vulnerabilities.
The methodologies discussed enable a detailed exploration
of the interactions between smart contracts and their func-
tions. This strategy aids in identifying potential weaknesses
and security threats while also identifying opportunities for
improvement and innovation.

REFERENCES

[1] Sabrina Aufiero, Giacomo Ibba, Silvia Bartolucci, Giuseppe Destefanis,
Rumyana Neykova, and Marco Ortu. The network structure of smart
contracts in ethereum dapps. Complex Networks 2023 (to appear), 2023.

[2] Sabrina Aufiero, Giacomo Ibba, Silvia Bartolucci, Giuseppe Destefanis,
Rumyana Neykova, and Marco Ortu. Dapps ecosystems: Mapping
the network structure of smart contract interactions. arXiv preprint
arXiv:2401.01991, 2024.

[3] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and
Yannis Smaragdakis. Ethainter: a smart contract security analyzer for
composite vulnerabilities. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 454-469, 2020.

[4] G Ibba, S Khullar, E Tesfai, R Neykova, S Aufiero, M Ortu, S Bartolucci,
and G Destefanis. A preliminary analysis of software metrics in decen-
tralised applications. In Proceedings of the Fifth ACM International
Workshop on Blockchain-enabled Networked Sensor Systems, pages 27—
33. ACM, 2023.

[5] Giacomo Ibba, Sabrina Aufiero, Silvia Bartolucci, Rumyana Neykova,
Marco Ortu, Roberto Tonelli, and Giuseppe Destefanis. Mindthedapp:
a toolchain for complex network-driven structural analysis of ethereum-
based decentralised applications. arXiv preprint arXiv:2310.02408,
2023.

[6] Giacomo Ibba and Marco Ortu. Analysis of the relationship between
smart contracts’ categories and vulnerabilities. In 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 1212-1218. IEEE, 2022.

[7] Giacomo Ibba, Giuseppe Antonio Pierro, and Marco Di Francesco. Eval-
uating machine-learning techniques for detecting smart ponzi schemes.
In 2021 IEEE/ACM 4th International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB), pages 34-40. IEEE,
2021.

[8] Marco Ortu, Matteo Orrd, and Giuseppe Destefanis. On comparing
software quality metrics of traditional vs blockchain-oriented software:
An empirical study. In 2019 IEEE International Workshop on Blockchain
Oriented Software Engineering (IWBOSE), pages 32-37. IEEE, 2019.

[9] Giorgio Parisi. In un volo di storni. Rizzoli, 2021.

[10] Roberto Tonelli, Giuseppe Antonio Pierro, Marco Ortu, and Giuseppe
Destefanis. Smart contracts software metrics: A first study. Plos one,
18(4):e0281043, 2023.



